
 Last revision: 12/5/01

DELTA TAU
Data Systems, Inc.

Why PMAC Controllers Are Easy To Use

Delta Tau’s PMAC and Turbo PMAC families of controllers justly have the reputation as being
the most powerful and flexible in the world. Many people do not realize that PMAC controllers
have many features that make them among the easiest to use as well. These features aid in the
ease of use for both basic and more advanced applications.

The Basics

Interactive Command Environment
PMAC controllers provide a direct interactive communications environment permitting the user
to command and query the controller directly with simple commands. This makes setup,
debugging, and diagnostics very easy. In fact, many applications can be accomplished entirely
with these simple interactive commands, requiring no stored programs in the PMAC.

High-Level, English-Based Programming Language
Many motion controllers work with assembly-language style short acronyms for their commands,
making the programs and command sequences unreadable to anyone not completely immersed in
the programming.

PMAC controllers use high-level English-based commands (IF, WHILE, DWELL, CALL, etc.)
whose meaning can easily be followed by “casual observers”. Furthermore, the “macro
substitution” capability in Delta Tau’s PC-based editors permits the generation of PMAC
programs that read like “natural language”.

Automatic Sequencing of Moves
In most computing environments used for motion control, the user program issues a command to
start a move (with actual execution of the move handled “underneath” the program). It is then the
responsibility of the user’s program to figure out when the move has completed, with some
structure like:

WHILE (MoveOver=0) WAIT

in order to sequence the execution of the program properly.

In PMAC controllers, the controller’s operating system automatically handles the sequencing of
the moves and the associated calculations. This means easier, simpler, shorter, programs that are
easier to read as well.

Single Method of Programming Moves
Most motion controllers have completely different methods for programming point-to-point
moves and blended, or contoured moves. Also there are completely different methods for
programming moves that are a function of time, and moves that are a function of a master
position.

Not so in PMAC controllers. PMAC’s unified method towards move programming lets you do
all of these types of motion in a single style of programming. Usually, just a single variable
needs to be changed in order to change the mode of operation.

Programming in Engineering Coordinates
Many motion controllers require you to program the motion in the raw units of encoder counts.
Not so with PMAC controllers – they allow you to enter the relationship between the raw
measurement units and the desired user (engineering) units once in the setup, and then program
the motion in terms of the engineering units from there on. If you want to change the engineering
units (e.g. from metric to English), you only have to change a single number for the axis.

For example, if Motor #1 has 1-micron measurement resolution, and you wish to program it as
the X-axis in units of millimeters, you simply define:

#1->1000X

This command assigns Motor 1 to the X-axis with 1 programming unit (mm) of X equal to 1000
counts of Motor 1. If you wish to change this to inches, you simply change the definition to:

#1->25400X

Centralized Control for Easy Coordination
Many vendors are pushing distributed motion control schemes, with single-axis smart drives
connected on some kind of network, ring, or Fieldbus. The appeal of these systems is a
simplification of wiring – a single slender cable can supposedly transmit all of the information
needed between the system’s central intelligence and the relatively self-sufficient smart drives.

This scheme has its place for simple, uncoordinated motions. However, as soon as even simple
coordination between axes is required, it becomes very difficult to do with distributed
intelligence, even for a task as basic as reacting properly on one drive to a fault on another.
Sophisticated coordination concepts, such as circular interpolation or contouring, can be virtually
impossible to do properly in a system with highly distributed intelligence. Many companies have
started down the road of a network of distributed smart drives, only to abandon the approach
when it proved too difficult to program and debug. Very often in these distributed systems, data
has to be handled by four processors: the central computer’s main processor, the central
computer’s network/bus communications processor, the drive’s network/bus communications
processor, and the drive’s main processor.

By contrast, PMAC controllers use a highly centralized software approach, where all the key
information needed for tight coordination is immediately accessible by PMAC’s processor.
Multi-axis moves in a single PMAC “coordinate system” are automatically fully coordinated.

Even if distributed hardware is required for wiring simplification, PMAC’s MACRO ring
provides single-strand (optical or electrical) communications at speeds and determinism levels
high enough that the control software can be entirely centralized – including all of the servo
loops. This preserves the same ease of programming as with a centralized-hardware approach.

 New Ideas in Motion . . . Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 / Tel. (818) 998-2095 Fax. (818) 998-7807 / www.deltatau.com

Asynchronous PLC Program Execution
Whether the move sequencing is done explicitly in the motion program or automatically by the
controller’s operating system, there is usually a need for other calculations to be done that are
asynchronous to the sequence of motion. Many controllers do not have this type of multi-tasking
capability, and it is tremendously difficult to implement these types of algorithms.

PMAC controllers have “PLC” programs that are designed to run asynchronously to the motion
programs and independent from them. This makes it very easy to implement additional types of
calculations.

True Floating-Point Math Capabilities
Many motion controllers do not provide true floating-point math capabilities, often carrying just a
little bit of fixed-point fractional resolution in some variables. In these systems, the user must
take a great deal of care to see that calculations do not run into overflow, underflow, and round-
off/truncation problems. PMAC controllers offer a full floating-point math library (using 48-bit
floating-point variables) that automatically provides a dynamic range sufficient for virtually all
motion control applications encountered so far. This means that the programmer can concentrate
on the application, not on the limitations of the controller.

Automatic Variable Type Matching
Most computing environments, including most motion controllers, require you to match the types
of your variables carefully – bit, byte, “short” and “long” variables, fixed-point and floating-point
variables – and explicitly perform any conversions between types. This can be time-consuming
and confusing for the vast majority of motion control users who are not computer-science experts.

PMAC controllers automatically handle all type matching of variables, so the user does not have
to worry about any of these issues. It is literally possible to combine single-bit Boolean variables,
short fixed-point variables, and double-word floating-point variables directly in a single
expression.

Fast Servos with High Resolution and Small Delay – Easy
Tuning
Many people regard fast servo update times with minimal computation delays and high-resolution
outputs as something needed for only super-precision or super-fast applications. However, even
in “standard” applications, the reduced “phase lag” and “quantization noise” that a fast, precision
servo provides makes the tuning of the system far easier.

While any digital servo loop adds phase lag compared to an ideal analog loop, PMAC’s highly
optimized loops add a phase lag that is often an order of magnitude less than competing
controllers. Large amounts of phase lag can make it very difficult to tune the system for good
response, and can limit the performance of the system.

Hardware Position Capture and Compare
PMAC controllers have super-fast position-capture and position-compare functions built into the
hardware circuitry – no software intervention is required. The hardware capture circuits mean
that you automatically get a precise position reading at the instant of your trigger (for homing,
probing, or registration). You do not need to carefully evaluate your speeds and delays to
determine if your capture is accurate enough – it always is!

 New Ideas in Motion . . . Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 / Tel. (818) 998-2095 Fax. (818) 998-7807 / www.deltatau.com

Because the position compare outputs trigger instantly when the preset actual position is reached,
many things become easier. For instance, it is not necessary to keep the servo errors within the
bounds of your required output tolerances. With this feature, it does not matter how big the servo
error is; the output will still be triggered precisely by the actual position register. This feature can
eliminate a great deal of development time that would be required for super-accurate tuning.

Beyond the Basics I – PMAC’s Powerful Built-In
Functions
The breadth and depth of PMAC’s feature set means that PMAC can handle many problems
automatically and simply that are very difficult to do with simpler controllers.

Servo-Loop Adjustments
PMAC controllers provide several terms in their servo algorithms that make it very easy to
compensate for imperfections in the physical system. In controllers without these terms, it is
much more difficult, and sometimes not possible, to solve these problems. These terms include:

• Deadband compensation: These terms make it possible to create a deadband
automatically, or to compensate for a physical deadband in the system. For example,
proportional hydraulic valves can have significant deadband in their zero-crossing
compared to the more expensive servo valves, but many users find that PMAC’s
deadband compensation corrects for this enough that they can use the less-expensive and
lower-maintenance proportional valves.

• Output offset parameter: This term makes it possible to compensate digitally for analog-
circuit offsets, no pot-tweaking is required.

• Friction feedforward compensation: Traditionally, Coulomb (“dry”) friction, a non-linear
effect, could not be compensated for directly. Attempts to compensate for the lags that
this friction introduced by using integral gain during motion often resulted in overshoot at
the endpoint. PMAC controllers have a special term to compensate directly for this
effect, without causing other problems.

• Backlash compensation: Most motion control systems use only a position sensor on the
motor for simplicity and cost-effectiveness. However, this leaves the system unable to
directly measure the effect of backlash in the gearing. If the magnitude of the backlash
can be characterized, PMAC can automatically compensate for the backlash, either with a
constant value, or varying as a function of position, eliminating the need to ship the
system with an expensive sensor on the load to correct for this problem.

Straightforward Dual Feedback Support

Building-Block Trajectories

Cutter-Radius Compensation
In many applications, particularly those involving cutting shapes, the path of the cutting tool must
be offset from the path given along the edge (2D) or surface (3D) of the shape. If the controller
cannot do these calculations automatically, as most simple controllers cannot, the applications

 New Ideas in Motion . . . Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 / Tel. (818) 998-2095 Fax. (818) 998-7807 / www.deltatau.com

programmer must figure out the offsets. Particularly difficult is calculating the offset intersection
points, especially when arc moves are used.
PMAC controllers have built into them 2D and 3D (Turbo PMACs only) cutter-radius
compensation algorithms that do these calculations automatically, permitting the user to focus on
the part shape desired, and not the internal details of what the controller needs to do to create the
part shape.

Kinematic Calculations
Increasingly, people are using mechanisms with non-Cartesian geometries to achieve higher
performance levels and/or lower cost and weight. This increases the complexity of programming
the tool’s path and destination points, which most users will still want to specify in the Cartesian
coordinates of the tip.

Most controllers force you to program the motion in the coordinates of the actual joints, or
motors, a difficult and non-intuitive task, but Turbo PMAC controllers permit you to enter special
subroutines with the “forward kinematic” (joint-to-tip) and “inverse kinematic” (tip-to-joint)
conversions. It then automatically calls these subroutines at the appropriate times, thus
permitting the user to program the motion as if it were a Cartesian system.

Lookahead Control
With most controllers, the responsibility for ensuring that programmed motion does not violate
machine constraints such as maximum acceleration falls on the user as he programs each move.
Many controllers can handle these constraints well for simple point-to-point moves, but almost
none can handle them for anything more complex, especially when the required acceleration and
deceleration must occur over many programmed moves. This puts the onus on the user, who
must not only check every move against the constraints, but understand thoroughly how the
controller blends moves together to devise programs that do not violate constraints, but are
reasonably efficient in executing the sequence within constraints.

PMAC’s “lookahead” control algorithms automatically scan far ahead in the programmed move
sequence to identify potential violations of machine constraints – position, velocity, and
acceleration. They then slow the trajectory as needed so as not to violate any of the constraints.
All the user must do is tell PMAC what the constraints are, then give it the motion sequence –
PMAC automatically does the rest.

Beyond the Basics II – PMAC Lets You Create New
Features

Access to All Internal Registers

Loops Around Loops

 New Ideas in Motion . . . Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 / Tel. (818) 998-2095 Fax. (818) 998-7807 / www.deltatau.com

	Why PMAC Controllers Are Easy To Use
	The Basics
	Interactive Command Environment
	High-Level, English-Based Programming Language
	Automatic Sequencing of Moves
	Single Method of Programming Moves
	Programming in Engineering Coordinates
	Centralized Control for Easy Coordination
	Asynchronous PLC Program Execution
	True Floating-Point Math Capabilities
	Automatic Variable Type Matching
	Fast Servos with High Resolution and Small Delay �
	Hardware Position Capture and Compare

	Beyond the Basics I – PMAC’s Powerful Built-In Fu
	Servo-Loop Adjustments
	Straightforward Dual Feedback Support
	Building-Block Trajectories
	Cutter-Radius Compensation
	Kinematic Calculations
	Lookahead Control

	Beyond the Basics II – PMAC Lets You Create New F
	Access to All Internal Registers
	Loops Around Loops

